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Entropy of Spin Fields in Schwarzschild Spacetime
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By using the Teukolsky master equation, we consider the gravitational,
electromagnetic, and neutrino fields in Schwarzschild spacetime. The free energy
and entropy of the spin fields are obtained in terms of the brick-wall model. It
is shown that the entropy of all the spin fields due to the presence of the event
horizon is proportional to the surface area of the event horizon, and the entropy
of the neutrino field is the absolute minimum.

To find a statistical origin of the black hole entropy by employing
the so-called brick-wall model, ’t Hooft (1985) studied first the statistical
mechanics of a free scalar field propagating in a Schwarzschild black hole
background. Subsequently, quantum corrections to the Bekenstein–Hawking
entropy due to a scalar field have been studied by different authors in different
types of spacetime, such as the Reissner–Nordström (Demers et al., 1995),
Reissner–Nordström–(anti-)de Sitter (Cai and Zhang, 1996), and BTZ (Kim,
1999) spacetimes. In the present paper we focus our attention on the gravita-
tional, electromagnetic, and neutrino fields in a Schwarzschild background.
We briefly review the Teukolsky master equation and then compute the
entropy of spin fields by using the brick-wall model.

In the case of a Schwarzschild black hole, spacetime is described by
the metric

gmn 5 diagFD
r 2 , 2

r 2

D
, 2r 2, 2r 2 sin2uG

mn

(1)

where D 5 r(r 2 2M ), and M is the mass of the black hole.
Teukolsky (1973), using the Newman–Penrose formalism, succeeded in

disentangling the perturbations of the Kerr metric, and derived a master
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equation governing not only gravitational perturbations, but electromagnetic,
neutrino, and scalar fields as well. In the Schwarzschild limit, this master
equation reads
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where p is the helicity of the field. p 5 62, C2 [ CB
0, and C22 [ r 4CB

4 for
the gravitational field; p 5 61, C1 [ F0, and C21 [ r 2F2 for the electromag-
netic field; p 5 21/2 and C21/2 5 rx1 for the neutrino field; and p 5 0 and
C0 5 F for the scalar field.

By separating variables in Eq. (2), we obtain the following complete
set of solutions:

Cp 5 e2iEt
pRlE(r) pY m

l (u,w) (3)

where l and m are integers satisfying the inequalities l $ . p . and 2l #
m # l, and pYm

l (u,w) is a spin-weighted spherical harmonic (Goldberg et al.,
1967). pRlE(r) satisfies the ordinary differential equation

FD2p d
dr 1Dp11 d

dr2 1
r 4E 2 1 2ipEr 2(r 2 3M )

D

2 (l 2 p)(l 1 p 1 1)G pRlE(r) 5 0 (4)

In the WKB approximation one writes pRlE(r) 5 pGlE(r) exp[iS(r, p, l, E )],
where pGlE(r) is a slowly varying amplitude and S(r, p, l, E ) is a rapidly varying
phase. To leading order, only first derivatives of the phase are important. In
particular, Eq. (4) yields the radial wave number k(r, p, l, E ) [ rS:

k2 5
1
D Fr 4

D
E 2 2 (l 2 p)(l 1 p 1 1)G (5)

There is an ultraviolet cutoff just outside the event horizon rH (52M ) and
an infrared cutoff for a large distant L in the brick-wall model of ’t Hooft
(1985). According to the semiclassical quantization rule, the radial wave
number is quantized as
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L
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where ε is a small, positive constant. Then, the number of eigenstates with
energy smaller than E is given by
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where we have set h 5 (l 1 1/2)2 and (l(2l 1 1) ➞ * dh. The upper limit
of integration in the variable h is due to the fact that k2 has to be positive.
The integration in h can be performed and so
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where in the latter expression only the leading divergences have been written
down. Here V ' 4pL3/3, v 5 2 corresponds to the gravitational and electro-
magnetic fields, and v 5 1 corresponds to the neutrino and scalar fields.

In terms of the standard statistical mechanics, the free energy of spin
fields at the inverse temperature b is given by

2bF 5 6o
a

ln(1 6 e2bEa) (9)

where the plus sign in Eq. (9) corresponds to the Fermi case, while the minus
sign corresponds to the Bose case. Using Eq. (8) to determine the density of
states, we obtain
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The first term on the right-hand side of the latter equation is the usual
contribution from the vacuum surrounding the system at large distances,
while the second term is an intrinsic contribution from the event horizon and
diverges linearly as ε ➞ 0.

From Eq. (10) one can easily obtain the corresponding entropy of the
spin fields
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At the equilibrium temperature T 5 (4prH )21, the entropy reads
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where A 5 4pr 2
H is the surface area of the event horizon, and lp 5

*rH1ε
rH !2grr dr ' 2!εrH is the proper distance from the event horizon rH

to rH 1 ε.
In conclusion, by using the brick-wall model, we have obtained the free

energy and entropy of the spin fields on the background of the Schwarzschild
black hole; they are given by Eqs. (10) and (12). The leading terms of the
free energy and entropy due to the gravitational and electromagnetic fields
are equal to two times the one due to the scalar field, where the factor of
two is due to the helicity of fields. The leading terms of the free energy and
entropy are equal to 7/8 times the scalar one for the neutrino field. From Eq.
(12) we find that the entropy of all the spin fields due to the presence of the
event horizon is proportional to the surface area of the event horizon, and
that the entropy of the neutrino field is the absolute minimum.
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